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Different Profiles of HPC illicit workloads

Motivation
✓ GPUs has become the main computational contributor for HPC systems

✓ It is a serious concern that GPUs are exploited by Illicit workloads (e.g. 
cryptocurrency, password cracking) for unauthorized computation [1]

✓ For HPC security and resource allocation, GPU accelerated HPC systems 
need fast, lightweight automated illicit workloads detection [2] [3]

✓ Our initial profiling suggests that illicit workloads can be discriminated from 
authorized HPC workloads

Microarchitectural events selection:

▪ Use performance counters to record as 
many events as possible

▪ Use Support Vector Classification (SVC) to 
select the 20 most related events for 
classification.

▪ Remove events that have high VIFFramework

Data movement & resource utilization trace 
processing:

▪ Extract features from trace using tsfresh [4]

▪ Select features with SVC to filter coefficient 
features for ANN/SVM/KNN models

▪ Align the trace length by truncating or 
stretching the traces for RNN model 

• intragroup variance  In both authorized/unauthorized 
workloads is high, simply classifications methods fail

• Recurrent neural networks (RNN) is fit for online time-
series data classification

• Three data resource are independent; the acquisition  
overhead  and classification accuracy are different 

Hardware Performance Counters
✓ DRAM, SFU, L2 Cache PMCs are most related 

PMCs for classification

✓ Within 20 counters, using more hardware  
counters leads to higher accuracy

✓ ANN models have the highest accuracy (98%)

✓ Comparing to other sources, PMC based detection 
is the most accurate but its data collection and 
storage incurs the highest overhead

✓ Fusion RNN models trained with both traces improve 
accuracy over those with either

✓ RNN trained with data movement trace achieves higher 
accuracy than that with resource utilization trace

✓ RNN classification method can be deployed online for 
illicit workloads detection

✓ RNN model achieves higher accuracy than ANN when  
trained with resource utilization trace 

Discussion & Future Plan

Conclusion

▪ RNN models trained with data movement and resource 
utilization traces provide accurate illicit workloads detection 
with a low overhead 

▪ RNN models may fail to detect some illicit workloads if the 
workloads have a high resource utilization, but such failure 
can be corrected by ML models with PMCs.

▪ Authorized workloads that have low floating-point 
operation and resource utilization have a chance to be mis-
classified as unauthorized workloads

▪ In the future, we plan to build an online hierarchical risk 
model and detection framework to analyze and combine 
results from multiple sources 

✓ Authorized and unauthorized workloads show difference on 
microarchitectural activities, data movement and resource 
utilization

✓ It is possible to design data-driven ML models to identify 
illicit workloads from HPC workloads

✓ PMC-based detection is the most accurate if only one data 
source is used but consumes resource for data collection 

✓ Online resource utilization trace could provide initial 
diagnose with very low overhead
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Results

Machine learning based automatic detection

• Floating point vs integer operations:

• Illicit workloads: high hash operations, low floating point operations,

• HPC workloads: floating point linear algebra and FFT operations.

Such difference reflects on microarchitectural events, data movement, and
resource utilization.

• Microarchitectural events:

✓ HPC workloads have different
integer and floating point ratio

✓ HPC workloads have higher L2,
DRAM, SFU utilization

✓ HPC workloads have higher load
and store throughput

• Data movement: 

✓ Illicit workloads barely transfer 
data from device to host

✓ Authorized kernels last longer

✓ Optimized HPC app. overlap 
computation and data transfer 

• Resource utilization: 

✓ HPC workloads typically have multiple complex phases in each iteration

✓ HPC workloads generally have high resource utilization variation

These different profiles encourage illicit workload detection. However, simple 
classifiers would fail to accurately categorize the diverse HPC workloads

Data source ML model K40 P100 V100

Data 
movement

RNN 90% 93% 92%

Resource 
utilization

RNN 89% 90% 88%

ANN 89% 88% 89%

Both traces Fusion RNN 93% 97% 93%
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