
Fingerprinting Anomalous Computation with RNN for GPU-Accelerated HPC Machines
Pengfei Zou*, Ang Li¶, Kevin Barker¶, Rong Ge*

*Clemson University, ¶Pacific Northwest National Laboratory

Different Profiles of HPC illicit workloads

Motivation
✓ GPUs has become the main computational contributor for HPC systems

✓ It is a serious concern that GPUs are exploited by Illicit workloads (e.g.
cryptocurrency, password cracking) for unauthorized computation [1]

✓ For HPC security and resource allocation, GPU accelerated HPC systems
need fast, lightweight automated illicit workloads detection [2] [3]

✓ Our initial profiling suggests that illicit workloads can be discriminated from
authorized HPC workloads

Microarchitectural events selection:

▪ Use performance counters to record as
many events as possible

▪ Use Support Vector Classification (SVC) to
select the 20 most related events for
classification.

▪ Remove events that have high VIFFramework

Data movement & resource utilization trace
processing:

▪ Extract features from trace using tsfresh [4]

▪ Select features with SVC to filter coefficient
features for ANN/SVM/KNN models

▪ Align the trace length by truncating or
stretching the traces for RNN model

• intragroup variance In both authorized/unauthorized
workloads is high, simply classifications methods fail

• Recurrent neural networks (RNN) is fit for online time-
series data classification

• Three data resource are independent; the acquisition
overhead and classification accuracy are different

Hardware Performance Counters
✓ DRAM, SFU, L2 Cache PMCs are most related

PMCs for classification

✓ Within 20 counters, using more hardware
counters leads to higher accuracy

✓ ANN models have the highest accuracy (98%)

✓ Comparing to other sources, PMC based detection
is the most accurate but its data collection and
storage incurs the highest overhead

✓ Fusion RNN models trained with both traces improve
accuracy over those with either

✓ RNN trained with data movement trace achieves higher
accuracy than that with resource utilization trace

✓ RNN classification method can be deployed online for
illicit workloads detection

✓ RNN model achieves higher accuracy than ANN when
trained with resource utilization trace

Discussion & Future Plan

Conclusion

▪ RNN models trained with data movement and resource
utilization traces provide accurate illicit workloads detection
with a low overhead

▪ RNN models may fail to detect some illicit workloads if the
workloads have a high resource utilization, but such failure
can be corrected by ML models with PMCs.

▪ Authorized workloads that have low floating-point
operation and resource utilization have a chance to be mis-
classified as unauthorized workloads

▪ In the future, we plan to build an online hierarchical risk
model and detection framework to analyze and combine
results from multiple sources

✓ Authorized and unauthorized workloads show difference on
microarchitectural activities, data movement and resource
utilization

✓ It is possible to design data-driven ML models to identify
illicit workloads from HPC workloads

✓ PMC-based detection is the most accurate if only one data
source is used but consumes resource for data collection

✓ Online resource utilization trace could provide initial
diagnose with very low overhead

Reference
[1] Yongdong Wu, Zhigang Zhao, Feng Bao, and Robert H Deng. Software puzzle: A counter measure to
resource-inflated denial-of-service attacks. IEEE Transactionson Information Forensics and security, 10(1):168–
177, 2014
[2] Davide Balzarotti, Roberto Di Pietro, and Antonio Villani. The impact of gpu-assisted malware on
memory forensics: A case study. Digital Investigation, 14:S16–S24, 2015
[3] Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian, and Nael Abu-Ghazaleh. Rendered insecure: Gpu
side channel attacks are practical. In Proceedings of the2018 ACM SIGSAC Conference on Computer and
Communications Security, pages2139–2153. ACM, 2018.
[4] Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W. Kempa-Liehr. Timeseries feature extraction on
basis of scalable hypothesis tests (tsfresh – a pythonpackage). Neurocomputing, 307:72 – 77, 2018.
[5] John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam Waksman, Simha Sethumadhavan,
and Salvatore Stolfo. On the feasibility of online malware detection with performance counters. In ACM
SIGARCH Computer Architecture News, volume 41, pages 559–570. ACM, 2013.

Results

Machine learning based automatic detection

• Floating point vs integer operations:

• Illicit workloads: high hash operations, low floating point operations,

• HPC workloads: floating point linear algebra and FFT operations.

Such difference reflects on microarchitectural events, data movement, and
resource utilization.

• Microarchitectural events:

✓ HPC workloads have different
integer and floating point ratio

✓ HPC workloads have higher L2,
DRAM, SFU utilization

✓ HPC workloads have higher load
and store throughput

• Data movement:

✓ Illicit workloads barely transfer
data from device to host

✓ Authorized kernels last longer

✓ Optimized HPC app. overlap
computation and data transfer

• Resource utilization:

✓ HPC workloads typically have multiple complex phases in each iteration

✓ HPC workloads generally have high resource utilization variation

These different profiles encourage illicit workload detection. However, simple
classifiers would fail to accurately categorize the diverse HPC workloads

Data source ML model K40 P100 V100

Data
movement

RNN 90% 93% 92%

Resource
utilization

RNN 89% 90% 88%

ANN 89% 88% 89%

Both traces Fusion RNN 93% 97% 93%

Acknowledgement
This work is supported in part by the U.S. National Science
Foundation under Grants CCF-1551511, CNS-1551262 and
U.S. DOE Office of Science, Office of Advanced Scientific
Computing Research, under award 66150: “CENATE - Center
for Advanced Architecture Evaluation

ben

Evaluated
Benchmarks

Accuracies of models trained with data
movement & resource utilization traces

Method:

Demo

