Linking a Next-Gen Remap Library into a Long-Lived Production Code

e

e LOS Alamos

NATIONAL LABORATORY
EST.1943

Our task: Add Portage remapping to xRage

"= The xRage application runs on an AMR mesh

= Third-party libraries often use their own mesh, such as a
Generalized Eulerian Mesh (GEM)

= XxRage must map fields between the two meshes

XRage
AMR mesh

3rd-party lib
GEM

= The current xRage mapper was implemented in a short
timeframe

— Not well understood by current code team
— Not easily maintainable, extensible

= Using the new Portage library would be much more flexible

How can we take two codes that are so
different, and make them work together?

Background: The xRage application

= xRage is an Eulerian AMR
radiation-hydrodynamics code

= Qriginal code written ~1990
= Contains about 470K SLOC

— Not counting numerous third-party
libraries

= Mostly Fortran 90, some C/C++
= MPI-only parallelism
= Code modernization is ongoing

I
(a)

= Portage is a modern framework
for remapping and linking

= Development started in 2015
= Modular, extensible design

= Contains about 14K SLOC

= Written in C++, makes heavy use
of classes and templates

= MPI+OpenMP parallelism

Charles R. Ferenbaugh and Brendan K. Krueger
Los Alamos National Laboratory

Supercomputing 2019
November 19, 2019

Legacy mapper cleanup

GEM mapper

= The legacy GEM mapper had several
design limitations:
— Not encapsulated from the rest of xRage
— Used private module data for everything
— Not unit-testable

= We did major refactoring to address these
ISsues

= We also created a remapper base class,
allowing us to switch easily between legacy
and Portage mappers = e

Creating Fortran/C++ interfaces

= We wrote C++ wrapper interfaces to native Fortran data
— Uses C interop features from Fortran 2003, and the “Hourglass Interface”
design pattern
— Avoids making copies of large arrays
— Uses KokkosViews for multidimensional arrays in C++

Fortran 2008 Interface type :: mesh_t
integer :: numcell

integer(INT64), dimension(:), allocatable :: cell_address
real(REAL64), dimension(:,:), allocatable :: cell_center

end type mesh_t

extern Contains pointers to Fortran

struct mesh_data_t { dat o
int32 t array data (no copies!)

int64_tx

doublex « Contains shallow copy of
C struct (still no array
copies!)

« Can contain KokkosView
wrapper for Fortran array
(allows multi-dimensional
access from C++)

Portable C Inferface

};

ass_EAPMeshWrapper {
const mesh data_t mdata_;

C++14 Native Interface 1.

= We also wrote similar interface wrappers for subroutines

XRage extensions to Portage

= xRage needed features that Portage didn't
(yet) support:
— Support for cylindrical (r-z) geometry
— Specialized intersector for boxes, in place of
general polygon/polyhedron intersector
— Specialized search/distribute for GEM meshes, in
place of general kD-tree search n

= We developed these as extensions in xRage
= We're migrating all of them back to Portage
— Taking advantage of Portage extensible design

X &
e~ =
\(Q

o

(@]

0]

binary search in x

Los Alamos National Laboratory

NS4

MNational Nuclear Security Admimisiraifion

Current status

= Code is working, passing tests in xRage unit test framework
= Supports 2D and 3D remaps (1D in progress)

= Supports MPI parallelism

" |ntegration into physics packages is in progress

Initial timing results: Portage vs. legacy mapper

Case 2

AMR: 2.9M cells, distributed
GEM: 200K cells, single rank
MPI ranks: 576

Case 1

AMR: 2.8M cells, distributed
GEM: 200K cells, distributed
MPI ranks: 800

Average time per call (ms)
Case 1 Case 2
map direction legacy Portage speedup legacy Portage speedup
AMR to GEM 38.5 184 2.09x 56.4 21.5 2.62x
GEMto AMR 30.8 1.8 17.01x 6754.5 302.2 22.35x

Memory usage (case 2): legacy ~ 1.83 Gb, Portage ~ 0.24 Gb

Summary

* XRage-Portage remap improves performance and memory use
over legacy mapper

= Fortran/C++ Interface strategy is effective

= Portage modular design allowed us to add xRage-specific

customizations easily
= xRage can now leverage current and future Portage features
— Including support for many-core (current) and GPU (future)

This work will provide a model for more
next-generation packages to be integrated
into production codes

Acknowledgements

Thanks to:

= Andrew Gaspar and Robert Pavel, for working through
Fortran/C++ Interface issues elsewhere in xRage

= Neil Carlson, for writing a Portage-Truchas link that provided
some ideas for this work

* The xRage and Portage code teams

LA-UR-19-27263

