
Linking a Next-Gen Remap Library into a Long-Lived Production Code
Charles R. Ferenbaugh and Brendan K. Krueger

Los Alamos National Laboratory
Supercomputing 2019
November 19, 2019

Our task: Add Portage remapping to xRage
The xRage application runs on an AMR mesh
Third-party libraries often use their own mesh, such as a
Generalized Eulerian Mesh (GEM)
xRage must map fields between the two meshes

The current xRage mapper was implemented in a short
timeframe
– Not well understood by current code team
– Not easily maintainable, extensible
Using the new Portage library would be much more flexible

How can we take two codes that are so
different, and make them work together?

Background: The xRage application

xRage is an Eulerian AMR
radiation-hydrodynamics code
Original code written ∼1990
Contains about 470K SLOC
– Not counting numerous third-party

libraries
Mostly Fortran 90, some C/C++
MPI-only parallelism
Code modernization is ongoing

Background: The Portage remapping library

Portage is a modern framework
for remapping and linking
Development started in 2015
Modular, extensible design
Contains about 14K SLOC
Written in C++, makes heavy use
of classes and templates
MPI+OpenMP parallelism

Legacy mapper cleanup

The legacy GEM mapper had several
design limitations:
– Not encapsulated from the rest of xRage
– Used private module data for everything
– Not unit-testable
We did major refactoring to address these
issues
We also created a remapper base class,
allowing us to switch easily between legacy
and Portage mappers

Creating Fortran/C++ interfaces
We wrote C++ wrapper interfaces to native Fortran data
– Uses C interop features from Fortran 2003, and the “Hourglass Interface”

design pattern
– Avoids making copies of large arrays
– Uses KokkosViews for multidimensional arrays in C++

We also wrote similar interface wrappers for subroutines

xRage extensions to Portage

xRage needed features that Portage didn’t
(yet) support:
– Support for cylindrical (r-z) geometry
– Specialized intersector for boxes, in place of

general polygon/polyhedron intersector
– Specialized search/distribute for GEM meshes, in

place of general kD-tree search
We developed these as extensions in xRage
We’re migrating all of them back to Portage
– Taking advantage of Portage extensible design

Current status
Code is working, passing tests in xRage unit test framework
Supports 2D and 3D remaps (1D in progress)
Supports MPI parallelism
Integration into physics packages is in progress

Initial timing results: Portage vs. legacy mapper
Case 1
AMR: 2.8M cells, distributed
GEM: 200K cells, distributed
MPI ranks: 800

Case 2
AMR: 2.9M cells, distributed
GEM: 200K cells, single rank
MPI ranks: 576

Average time per call (ms)
Case 1 Case 2

map direction legacy Portage speedup legacy Portage speedup
AMR to GEM 38.5 18.4 2.09x 56.4 21.5 2.62x
GEM to AMR 30.8 1.8 17.01x 6754.5 302.2 22.35x

Memory usage (case 2): legacy ≈ 1.83 Gb, Portage ≈ 0.24 Gb

Summary
xRage-Portage remap improves performance and memory use
over legacy mapper
Fortran/C++ interface strategy is effective
Portage modular design allowed us to add xRage-specific
customizations easily
xRage can now leverage current and future Portage features
– Including support for many-core (current) and GPU (future)

This work will provide a model for more
next-generation packages to be integrated

into production codes

Acknowledgements
Thanks to:

Andrew Gaspar and Robert Pavel, for working through
Fortran/C++ interface issues elsewhere in xRage
Neil Carlson, for writing a Portage-Truchas link that provided
some ideas for this work
The xRage and Portage code teams

Los Alamos National Laboratory LA-UR-19-27263


