Posters
Research Posters
:
Poster 96: TSQR on TensorCores
Event Type
Posters
Research Posters
Registration Categories
TP
Tags
Best Posters
TimeWednesday, 20 November 201911:06am - 11:24am
Location505
DescriptionTall-Skinny QR (TSQR) is an efficient algorithm for calculating the QR decomposition of m x n matrices where m << n, which is done by recursively performing QR decomposition on subdivided blocks of the tall and skinny matrix. Such operations are useful for low-rank approximation methods, which are replacing more and more dense linear algebra in both scientific computing and machine learning fields. The present work focuses on the implementation of this important algorithm on Tensor Cores, which are available on the latest NVIDIA GPUs. We evaluate the speed, accuracy, and stability of TSQR on TensorCores.
Archive
Back To Top Button