The first ACM/IEEE Conference on Supercomputing was organized in 1988. Since 1991, SCinet has played an integral role in the SC legacy.

Much of the information in this timeline was sourced from a paper published by SCinet volunteer Linda Winkler. Winkler, L. (2015):

SCinet: 25 Years of Extreme Networking (340KB PDF)


sc88 logo


Orlando, Florida

  • First ACM/IEEE Conference on Supercomputing


sc91 logo


Albuquerque, New Mexico

  • SCinet becomes a critical component of the conference infrastructure. The first version of the network supports 10 Mbps local-area connections and 245 Mbps wide-area capacity. It also demonstrates the first multi-vendor 1 Gbps connection over the high-performance parallel interface (HPPI), which interconnected 12 supercomputers over a 20-mile distance. To deliver SCinet, volunteers install 3000 meters of fiber in the SC exhibits hall.
  • SCinet demonstrates one of the first uses of wide-area networks to support a high-speed, TCP/IP-based distributed application, which provided real-time remote data visualization of a high-resolution MRI scan of a human brain.


sc95 logo


San Diego, California

  • SCinet reaches a milestone as it supports 100 Mbps ethernet. The network also participates in the Information Wide Area Year, an experimental, inter-carrier environment created for SC to connect 11 wide-area ATM testbeds and agency networks, 17 supercomputer centers, five virtual reality research sites, and over 60 applications groups.


sc17 logo


San Jose, California

  • “Networking” is added to the official title of the SC conference, which becomes the International Conference for High Performance Computing, Networking, Storage and Analysis.
  • SCinet first demonstrates dense-wavelength-division multiplexing (DWDM) in collaboration with the National Transparent Optical Network, which allowed SCinet to deliver multiple networks over a single fiber pair to the convention center.


sc98 logo


Orlando, Florida

  • SCinet supports 1 Gbps ethernet LAN for SC’s 10th anniversary, as the conference returned to its first location.


sc99 logo


Portland, Oregon

  • For the first time, SCinet offers WiFi in the SC exhibit hall.
  • SCinet’s network capacity is considered sufficiently time-tested to allow exhibitors to leave their hardware at home and rely on the SCinet WAN to deliver remote access to their systems.
  • SCinet establishes an experimental networks (Xnet) component to highlight visionary pre-production technologies, many of which eventually become standard SCinet service offerings.


sc2000 logo


Dallas, Texas

  • SCinet’s Xnet team first demonstrates pre-production 10 Gbps ethernet.
  • SCinet initiates the first SC Network Bandwidth Challenge, soliciting proposals for demonstrations that illuminate the potential for scientific discovery when bandwidth is not an obstacle.


sc01 logo


Denver, Colorado

  • SC Global is established using Access Grid technologies to enable remote participation in and contribution to the conference on an international scale.
  • SCinet delivers DWDM production services for SC.


sc02 logo


Baltimore, Maryland

  • SCinet WiFi is made widely available throughout the convention center. The network also offers 10 Gbps ethernet LAN connectivity to SC exhibitors.
  • SCinet interconnects with the recently established Global Lambda Integrated Facility (GLIF) infrastructure, removing barriers for international collaboration and enabling SC exhibitors to conduct demonstrations on a global scale.


sc04 logo


Pittsburgh, Pennsylvania

  • The first 10 Gbps wide-area ethernet network circuit connects the SC exhibit hall to wide-area research networks around the world.
  • SCinet creates infrastructure to support the SC Storcloud Challenge, which solicit ideas that accelerate the evolution of high-performance storage for HPC’s vast databanks.
  • Software-defined networking (SDN) makes an early appearance in SCinet with Dynamic Resource Allocation via Generalized Multiprotocol Label Switching.
  • SCinet establishes the first Layer 2 WAN circuits, to enhance the flexibility of network services. It also delivers the first 40 Gbps metro-area circuit between the Pittsburgh Supercomputer Center and the exhibit hall.


sc05 logo


Seattle, Washington

  • SCinet demonstrates the first wide-area InfiniBand connection for high throughput and low latency over longer distances.


sc06 logo


Tampa, Florida

  • SC exhibitors associated with R&E networks in Japan establish a remote network operations center to provide the network resources and tuning required to support demonstrations from Pacific Rim research sites.


sc09 logo


Portland, Oregon

  • SCinet conducts early experiments with OpenFlow controllers. ESnet premiers the OSCARS system, which dynamically provisions lightpaths across the ESnet backbone to support SC demonstrations.


sc10 logo


New Orleans, Louisiana

  • SCinet reaches a new milestone as it supports 100 Gbps LAN and WAN at SC. The network also includes a 200 Gbps WAN superchannel, enabling higher data-rate transmission over long-haul networks.


sc13 logo


Denver, Colorado

  • SCinet upgrades to a 400 Gbps metro area superchannel to transport more bandwidth over long distances. The first trans-Atlantic 100 Gbps circuit, the Advanced North Atlantic 100G Pilot Project (ANA-100G), is made available at SC. The circuit connects New York City to Amsterdam.
  • The first SCinet Network Research Exhibition showcases innovations in emerging network hardware, protocols, and advanced network-intensive scientific applications.


sc14 logo


New Orleans, Louisiana

  • The first trans-Pacific 100 Gbps circuit, from Seattle to Singapore, is made available at SC, along with the upgraded 200 Gbps trans-Atlantic circuit. SCinet reaches a new milestone of 1.2 Tbps total WAN capacity.
  • SCinet introduces a workshop for researchers and engineers to share networking advances for scientific discovery: Innovating the Network for Data-Intensive Science.


sc15 logo


Austin, Texas

  • SCinet pilot tests software-defined networking (SDN) to manage network connections for exhibitors. The network also implements a firewall to perform analytics at 400 Gbps.
  • The inaugural year of the Women in IT Networking at SC (WINS) program, funded by the National Science Foundation and the Department of Energy. Five IT professionals receive hands-on apprenticeships and professional networking opportunities through SCinet’s participation in WINS.


sc16 logo


Salt Lake City, Utah

  • SC exhibitors with 100 Gbps booth connections set a new record during SCinet’s annual network stress test by moving 1.2 Tbps of traffic across the exhibit hall at SC16.


sc17 logo


Denver, Colorado

  • Industry partners contribute a record $66 million in state-of-the-art hardware, software, and services to build SCinet’s infrastructure at SC. To deliver SCinet, volunteers install 100 kilometers (more than 60 miles) of fiber in the SC exhibits hall.
  • SCinet delivers a record 3.63 Tbps of wide-area capacity to the Colorado Convention Center.


sc18 logo


Dallas, Texas

  • The 28th SCinet network is planned and built from the ground up by an international team of volunteers in preparation for SC18. The network delivers 4.12 Tbps of wide-area capacity.
Back To Top Button