Making Speculative Scheduling Robust to Incomplete Data
Event Type
Registration Categories
Scalable Computing
TimeMonday, 18 November 20194:50pm - 5:10pm
DescriptionWe study in this work the robustness of Speculative Scheduling to the
incompleteness of data. Speculative scheduling has been introduce as a solution
to incorporate future types of applications into the design of HPC schedulers, specifically
applications whose runtime is not perfectly known but can be modeled with
probability distributions. Preliminary studies show the importance of speculative scheduling
when dealing with stochastic applications when the application runtime model
is completely known. In this work we show how one can extract even from incomplete data on
the behavior of HPC applications enough information so that speculative scheduling performs well.

Specifically, we show that for synthetic runtimes who follow usual probability
distributions such as truncated normal distribution, we can extract enough data
from as little as 10 previous runs, to be within 5\% of the solution
which has all the exact information. For real traces of applications, the
performance with 10 data points varies with the applications (within 20\% of the
full-knowledge solution), but converges fast (5\% with 100 previous samples).

Finally a side effect of this study is to show the importance of the theoretical
results obtained on continuous probability distributions for speculative
scheduling. Indeed, we observe that the solutions for such distributions are
more robust to incomplete data than the solutions for discrete distributions.
Back To Top Button